()

L —

A

Murdoch

IIIIIIIIII

Extending the requirements
models

Topic 5

ICT284 Systems Analysis and Design

About this topic

We have already covered two primary models of functional
requirements: use cases and domain class models. The next step is
to review these models for consistency and to document parts of
them in more depth, as we begin to move from analysis towards
design. In this topic we cover some additional techniques and
models to extend the analysis models to show further information
about the system. In particular, we focus on fully developed use case
descriptions to document the internal steps within a use case. We'll
also cover system sequence diagrams (SSDs), state machine
diagrams (SMDs), and the CRUD technique for cross-checking the

domain classes and use cases.
1 Murdoch
w

UNIVERSITY

Unit learning outcomes addressed in
this topic

Explain how information systems are used within organisations to fulfil organisational
needs

Describe the phases and activities typically involved in the systems
development life cycle

Describe the professional roles, skills and ethical issues involved in systems analysis
and design work

Use a variety of techniques for analysing and defining business problems and
opportunities and determining system requirements

Model system requirements using UML, including use case diagrams and
descriptions, activity diagrams and domain model class diagrams

Explain the activities involved in systems design, including designing the system
environment, application components, user interfaces, database and software

Represent early system design using UML, including sequence diagrams,
architectural diagrams and design class diagrams

Describe tools and techniques for planning, managing and evaluating systems
development projects

Describe the key features of several different systems development methodologies

. Present systems analysis and desigh documentation in an appropriate,
consistent and professional manner 1 Murdoch

W UNIVERSITY

Topic learning outcomes

After completing this topic you should be able to:

Explain how additional information about use cases can be
represented in detail

Create a CRUD table (CRUD matrix) to verify use cases against
the domain model

Interpret and write fully developed use case descriptions

Develop activity diagrams to document the flow of activities
within a use case

Develop system sequence diagrams to model the interaction
between actors and the system

Develop state machine diagrams to model object behavior

1 Murdoch

W UNIVERSITY

Resources for this topic

READING
« Satzinger, Jackson & Burd, Chapter 5

« Satzinger, Jackson & Burd, Chapter 2 p60-62 (activity diagrams)

« Satzinger, Jackson & Burd, Chapter 4 p114-122 (State Machine
Diagrams)

Except where otherwise referenced, all images in these slides are
from those provided with the textbook: Satzinger, J., Jackson, R. and
Burd, S. (2016) Systems Analysis and Design in a Changing World,
7t edition, Course Technology, Cengage Learning: Boston. ISBN-13
9781305117204

g Murdoch

UNIVERSITY

Topic outline

CRUD technique for checking model consistency
Brief use case descriptions

Fully developed use case descriptions

Activity diagrams for use cases

System sequence diagrams (SSD)

State Machine Diagrams (SMD)

Summary of requirements models

Introduction

Almost completed analysis

activities ...

i

L i

W

Murdoch

UNIVERSITY

« We have already covered two primary aspects of
functional requirements: use cases and problem

domain classes

« In this topic we cover some additional

techniqgues and models to extend these models
to show further information about the system

Core
Processes

Analysis activities

Gather detailed information
Define requirements

Prioritize requirements

Develop user-interface dialogs
Evaluate requirements with users

Identify problem and obtain
approval

Plan and monitor the project
Discover and understand details
Design system components
Build, test, and integrate system

components
Complete system tests and deploy

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Ce

il tning

Slide 8

Revision
What is this diagram called?
What does it tell us?

Order-entry subsystem

Look up item
availability

sa

Create new

/

—

W

Murdoch

UNIVERSITY

""--._,_‘____H-_
order ,_,...-f""f
Order clerk
Update order G
. Produce
order summary Produce
=] report transaction
e summary
report
Management

Image from Satzinger, J. Jackson, R. & Burd, S. Systems Analysis and Design in a
Changing World, ? edition. Course Technology, Thomson Learning.

Slide 9

Revision

What is the
name of this
diagram?

What does it tell
us?

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

FriendLink Sale SaleTrans
customeri saleDateTime date
customer2 priorityCode transactionType
status S&H 1 1..* | amount
datelinkedUp tax paymentMethod

totalAmt
mountainBucks
2 g
0. * 0. CustPartnerCredit
amtBMOCredits
Customer amtPartnerCredits PromoPartner
name - name
mobilePhone N , | address
homePhone 0.. R 0. | contactPerson
emailAddress telephone
status agreementDescription
1
) e 1 0..1 1.*
To From Account
: . typeOfAccount
0.. 0.. creditCardNo
Message
0.1
date
messageText
1y P
Address
number
street
city
state
zipcade

Extending and integrating the
requirements models

Use case
diagrams

Use case
descriptions

{

bl

Activity
diagrams

-

System sequence
diagrams (SSDs])

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

n

—

w
Murdoch

UNIVERSITY

Domain model
class diagram

<
#"'
—

{

Ml

State machine
diagrams

11

i

——

W

Overview Murdoch

UNIVERSITY

« Topics 3 and 4 identified and modeled the two
primary aspects of functional requirements:
use cases and domain classes

« This topic focuses on detailed modelling for use
cases to document the internal steps within a
complex use case

 Fully developed use case descriptions provide
information about each use case, including
actors, stakeholders, preconditions, post
conditions, the flow of activities and exceptions
conditions

i

— —

Overview (continued) Mu:goch

UNIVERSITY

Activity diagrams can be used to show the flow
of activities for a use case

System seqguence diagrams (SSDs) show the
inputs and outputs for each use case as
messages

CRUD analysis, which correlates problem domain
classes and use cases, is an effective technique
to double check that all required use cases have
been identified

The use case modelling can be complemented by
extending the domain modelling by identifying
object behaviour using state machine diagrams

Brief use case descriptions

—

W

Use case descriptions Murdoch

UNIVERSITY

« Write a brief description for every use case:

Use case

Brief use case description

Create customer account

UUser/actor enters new customer account data, and the system
assigns account number, creates a customer record, and
creates an account record.

Look up customer

User/actor enters customer account number, and the system
retrieves and displays customer and account data.

Process account adjustment

Userfactor enters order number, and the systemn retrieves
custormer and order data; actor enters adjustment amount, and
the system creates a transaction record for the adjustment.

« Complex use cases will also require a fully
developed use case description (discussed later)

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

15

CRUD technique for verifying use
cases

i

——

CRUD technique MiFdach

« CRUD stands for -
Create
Read/Report
Update
Delete
« The CRUD technique provides a way of verifying

that all the required use cases have been
identified

 And that all the domain classes are supported by
the set of defined use cases

« There are two main ways of using the technique
(next slides)

n

L2

CRUD: 1. Verifying use cases Murdoch

UNIVERSITY

« In this form of CRUD analysis each operation
(C, R, U, D) is checked to verify there is a
relevant use case. Done for each domain class

Data entity/domain class | CRUD Verified use case
Customer Create Create customer account
Read/report Look up custemer

Produce customer usage report

Update Process account adjustment
Update customer account

Delete Update customer account (to archivel

« This example shows that the identified use cases
are sufficient to maintain Customer data

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

i

——

W

CRUD analysis - Steps Murdoch

UNIVERSITY

1. Identify all domain classes

2. For each class verify that use cases exist to:
Create a new instance
Update existing instances
Read or report on information in the class
Delete or archive inactive instances

3. Add new use cases as required. Identify
responsible stakeholders/actors

4. If there are different subsystems/applications,
identify which has responsibility for each action:
which to create, which to update, which to use
the data

CRUD: 2. Cross-checking use 4
cases and domain classes Murdoch

« Cross-match all of the domain classes and use
cases with the operations they perform

Use case vs. :
; . Customer Account Sale Adjustment
entity/domain class
Create customer account C C
Look up customer R F
Produce customer usage R R R
report
Process account adjustment | R U R C
Update customer account UD [archivel LD [archivel

 This example shows that the ‘Sale’ class is read
but never updated. 'Adjustment’ is created but
never used - additional use cases will be required

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Summing up...

The CRUD technique is a way of ensuring

consistency between the use case modelling and
the domain modelling

It documents whether there is a use case to

create, read, update and delete each domain
class

And whether domain classes exist to support the
requirements of each use case

If any inconsistencies are found, the models can
be questioned and corrected

1 Murdoch

W UNIVERSITY

Fully-developed use case
descriptions

Fully developed use case (L

descriptions iurdoch

« Where a use case is more complex, we may
need to write a more detailed fully developed
use case description

« Typically, a template is completed that ensures
all the required information is documented

formally
« ...the one used in the textbook is described here

Fully developed use
description

(Larger version on
next slides)

Use case name

Scenario (if
needed)

Triggering event
Brief description
Actors

Related use cases
(<<includes>>)

Stakeholders
Preconditions
Post conditions
Flow of activities

Exception
conditions

CaSeE _L']

ARMinAdAa A~

Use case name:

Create customer account.

Scenario:

Create online customer account.

Triggering event:

New customer wants to set up account online.

Brief description:

Online customer creates customer account by entering basic information
and then following up with one or more addresses and a credit or debit card.

Actors:

Customer.

Related use cases:

Might be invoked by the Check out shopping cart use case.

Stakeholders:

Accounting, Marketing, Sales.

Preconditions:

Customer Account subsystem must be available.
Credit/debit authorization services must be available.

Postconditions:

Customer must be created and saved.

One or more Addresses must be created and saved.
Credit/debit card information must be validated.

Account must be created and saved.

Address and Account must be associated with Customer.

Flow of activities: Actor System
1. Customer indicates desire to 1.1 System creates a new customer.
create customer account and 1.2 System prompts for customer
enters basic customer information. addresses.
2. Customer enters one or more 2.1 System creates addresses.
addresses. 2.2 System prompts for credit/debit
card.
3. Customer enters credit/debit card 3.1 System creates account.
information. 3.2 System verifies authorization
for credit/debit card.
3.3 System associates customer,
address, and account.
3.4 System returns valid customer
account details.
Exception 1.1 Basic customer data are incomplete.
conditions: 2.1 The address isn't valid.

3.2 Credit/debit information isn’t valid.

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Fully developed use case m

description Create customer Nititdoehs
account (part 1)

Use case name: Create customer account.

Scenario: Create online customer account.

Triggering event: New customer wants to set up account online.

Brief description: Online customer creates customer account by entering basic information
and then following up with one or more addresses and a credit or debit card.

Actors: Customer.

Related use cases: Might be invoked by the Check out shopping cart use case.

Stakeholders: Accounting, Marketing, Sales.

Preconditions: Customer Account subsystem must be available.

Credit/debit authorization services must be available.

Postconditions: Customer must be created and saved.

One or more Addresses must be created and saved.
Credit/debit card information must be validated.
Account must be created and saved.

Address and Account must be associated with Customer.

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Fully developed use case

description Create customer

account (part 2)

—

w

Murdoch

UNIVERSITY

Flow of activities: Actor System
1. Customer indicates desire fo 1.1 System creates a new customer,
create customer account and 1.2 System prompts for customer
enters basic customer information. addresses.
2. Customer enters one or more 2.1 System creates addresses.
addresses. 2.2 System prompts for credit/debit
card.
3. Customer enters credit/debit card 3.1 System creates account.
information. 3.2 System verifies authorization
for credit/debit card.
3.3 System associates customer,
address, and account.
3.4 System returns valid customer
account details.
Exception 1.1 Basic customer data are incomplete.
conditions: 2.1 The address isn't valid.
3.2 Credit/debit information isn't valid.

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

26

Use case description details 1 v

i

——

Murdoch

UNIVERSITY

Use case name
Verb-noun

Scenario (only if needed)

A use case can have more than one scenario

e e.g. ‘create customer account’ might have two scenarios,
‘create online” and ‘create by phone’; or be invoked by
different actors

« Each scenario would have a slightly different flow of
activities

Triggering event

Based on event decomposition technique

. . 1
Use case description details 2 ~

Murdoch

UNIVERSITY

Brief description

Can use the original ‘brief description’ written
when the use case was identified

Actors
From the use case diagram

The person or role that interacts with the
automated part of the system

- by specifying ‘automated’ it ensures we
can define the user interface dialogs
precisely

i

Use case description details 3 ~
MurdoTth

UNIVERSI

« Related use cases

If one use case invokes or <<includes>>
another

« Stakeholders

Anyone with an interest in the use case, other
than the actors involved

Fully developed use case)

—

W

description Create customer P S
account (part 1)

Use case name: Create customer account.

Scenario: Create online customer account.

Triggering event: New customer wants to set up account online.

Brief description: Online customer creates customer account by entering basic information
and then following up with one or more addresses and a credit or debit card.

Actors: Customer.

Related use cases: Might be invoked by the Check out shopping cart use case.

Stakeholders: Accounting, Marketing, Sales.

Preconditions: Customer Account subsystem must be available.

Credit/debit authorization services must be available.

Postconditions: Customer must be created and saved.

One or more Addresses must be created and saved.
Credit/debit card information must be validated.
Account must be created and saved.

Address and Account must be associated with Customer.

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

30

Use case description details 4 (L

Murdoch

UNIVERSITY

 Preconditions

What must be true before the use case begins

- What objects already exist, what information must be
available

« Post conditions

What must be true when the use case is
completed:
- What new objects are created or updated

- how objects are now associated (e.g. an Account is
now associated with a Customer)

Use for planning test case expected results

* For design stage - which objects will be
involved in collaborating

Use case description details 5 (L

Murdoch

UNIVERSITY

 Flow of activities

The activities that go on between actor and the
system

« Use a text description, using numbers to
indicate flow sequence

e Or an activity diagram
Exception conditions

« Alternative conditions or unexpected
conditions (e.g. credit information isn’t valid)

« Link to specific step in the flow of activities
described above

Fully developed use case

description Create customer

account (part 2)

—

w

Murdoch

UNIVERSITY

Flow of activities: Actor System
1. Customer indicates desire fo 1.1 System creates a new customer,
create customer account and 1.2 System prompts for customer
enters basic customer information. addresses.
2. Customer enters one or more 2.1 System creates addresses.
addresses. 2.2 System prompts for credit/debit
card.
3. Customer enters credit/debit card 3.1 System creates account.
information. 3.2 System verifies authorization
for credit/debit card.
3.3 System associates customer,
address, and account.
3.4 System returns valid customer
account details.
Exception 1.1 Basic customer data are incomplete.
conditions: 2.1 The address isn't valid.
3.2 Credit/debit information isn't valid.

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

33

Another fully
developed use
case description
example:

Ship Items

Go through this one
later at your own
pace to make sure
you fully understand
the technique

Use case name:

Ship items.

Scenario:

Ship items for a new sale.

Triggering event:

Shipping is notified of a new sale to be shipped.

Brief description:

Shipping retrieves sale details, finds each item and records it is shipped,
records which items are not available, and sends shipment.

Actors:

Shipping clerk.

Related use cases

None.

Stakeholders:

Sales, Marketing, Shipping, warehouse manager.

Preconditions:

Customer and address must exist.
Sale must exist.
Sale iterns must exist.

Postconditions:

Shipment is created and associated with shipper.

Shipped sale items are updated as shipped and associated with the shipment.
Unshipped items are marked as on back order.

Shipping label is verified and produced.

Flow of activities:

Actor System
1. Shipping requests sale and sale 1.1 System looks up sale and
item information. returns customer, address, sale,

and sales item information.

2. Shipping assigns shipper. 2.1 System creates shipment and
associates it with the shipper.

3. For each available item, shipping 3.1 System updates sale item as

records item is shipped. shipped and associates it with
shipment.
4. For each unavailable item, 4.1 System updates sale item as
shipping records back order. on back order.

5. Shipping requests shipping label 5.1 System produces shipping label
supplying package size and for shipment.
weight. 5.2 System records shipment cost.

Exception
conditions:

2.1 Shipper is not available to that location, so select another.

3.1 If order item is damaged, get new item and updated item quantity.

3.1 If item bar code isn't scanning, shipping must enter bar code manually.

5.1 If printing label isn't printing correctly, the label must be addressed
manually.

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

34

Fully developed use case !;!

description Ship items (part 1) Murdoch

Use case name: Ship items.

Scenario: Ship items for a new sale.

Triggering event: Shipping is notified of a new sale to be shipped.

Brief description: Shipping retrieves sale details, finds each item and records it is shipped,
records which items are not available, and sends shipment.

Actors: Shipping clerk.

Related use cases MNone.

Stakeholders: Sales, Marketing, Shipping, warehouse manager.

Preconditions: Customer and address must exist.

Sale must exist.
Sale items must exist.

Postconditions: Shipment is created and associated with shipper.

Shipped sale items are updated as shipped and associated with the shipment.
Unshipped items are marked as on back order.

Shipping label is verified and produced.

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

35

Fully developed use case [|

—

description Ship items (part 2) Murdoch

UNIVERSITY

Flow of activities: Actor System
1. Shipping requests sale and sale 1.1 System looks up sale and
item information. returns customer, address, sale,

and sales item information.

2. Shipping assigns shipper. 2.1 System creates shipment and
associates it with the shipper.

3. For each available item, shipping 3.1 System updates sale item as

records item is shipped. shipped and associates it with
shipment.
4. For each unavailable item, 4.1 System updates sale item as
shipping records back order. on back order.

5. Shipping requests shipping label 5.1 System produces shipping label

supplying package size and for shipment.

weight. 5.2 System records shipment cost.
Exception 2.1 Shipper Is not available to that location, so select another.
conditions: 3.1 If order item is damaged, get new item and updated item guantity.

3.1 If item bar code isn’t scanning, shipping must enter bar code manually.
5.1 If printing label isn’t printing correctly, the label must be addressed
manually.

JU

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Summing up...

Fully developed use case descriptions provide a
comprehensive description of the context of a use
case and the actions that occur in it

Typically, a template is completed that ensures all
the required information is documented formally

The fully developed use case description is a
basis for later documentation (such as system
sequence diagrams and sequence diagrams)

The preconditions and postconditions included in
the fully developed use case descriptions form a

basis for later software testing
1 Murdoch

W UNIVERSITY

Activity diagrams for use cases

Activity diagrams for use case (L

descriptions iurdoch

« We can use the activity diagram notation to
model the flow of activities between the Actor(s)
and the System within a single use case

 The activity diagram may replace the textual
flow of activities, or supplement it

Actor System

P

Customer System

Activity diagram
for use case

Cr ea t e CUS tomer Entera;Fdresaes } =\ Create addresses
Account

v Request account =1 Create customer \

[

@:
U

shows the flow of
activities between
customer and system y
within this use case

erify credit info

A
)

Return account
details

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

—

W

Activity diagram notation Murdoch

UNIVERSITY

Swimlane

| Synchronization |
heading

____,.___-_i'.;fl'.'--l bar {Sp!!t]

CE} () ‘Synchronizaﬁon ‘

bar (Join)

Another way
to show decision

- Manager

Starting activity ——
(Pseudo) T

Review
financials

Transition arrow

Activity “Ll_--.—~ =

Prepare
report

Decision |
- activity

Ending activity ——
(Pseudo)

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

41

i

L2

Activity diagram notation Murdoch

UNIVERSITY

1. Initial node - solid circle representing the start of the
process.

2. Actions - rounded rectangles representing individual
steps. The sequence of actions make up the total activity

shown by the diagram. -

3. Flow - arrows on the diagram indicating the
progression through the actions. Most flows do not
need words to identify them unless coming out of —
decisions.

4. Decision - diamond shapes with one flow coming in and
two or more flows going out. The flows coming out are
marked to indicate the conditions.

Slide 42

i

Activity diagram notation ~
(cont’d) iurdoch
6. Merge - diamond shapes with multiple flows coming in

and one flow going out. This combines flows previously
separated by decisions. Processing continues with any one
flow coming into the merge.

Split- a black bar with one flow coming in and two or
more flows going out. Actions on parallel flows beneath
the fork can occur in any order or concurrently.

Join - a black bar with two or more flows coming in and
one flow going out, noting the end of concurrent
processing. All actions coming into the join must be
completed before processing continues.

Activity final - the solid circle inside the hollow circle
representing the end of the process.

Flow of activities:

Actor

System

Customer

System

Create customer

Request account

Enter addresses

Create addresses

Create account

Enter credit info

il
U4

Verify credit info

Return account
details

fNA
Y

@

1. Customer indicates desire to
create customer account and
enters basic customer information.

2. Customer enters one or more
addresses.

3. Customer enters credit/debit card
information,

1.1 System creates a new customer.
1.2 System prompts for customer
addresses.

2.1 System creates addresses.
2.2 System prompts for credit/debit
card.

3.1 System creates account.

3.2 System verifies authorization
for credit/debit card.

3.3 System associates customer,
address, and account.

3.4 System returns valid customer
account details.

1.1 Basic customer data are incomplete.
2.1 The address isn't valid.
3.2 Credit/debit information isn't valid.

Activity diagram and
equivalent description for
Create Customer Account

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Activity diagram
for use case
Ship Items

Note:

« Synchronization
bars for loop

« Diamond for
decision point

Shipping clerk

System

_6spiay Sale & Saleltems +
i \ Customer info

Lookup Sale with
Saleltems

Assign shipper

Fareach Saleitem

/ Create shipment
> Link to Sale
k Link to Shipper

Y

Available?

/ Update status

Mark as shipped

Y

Mark as \

Link to shipment

backordered

/ Update status
\muate backorder

: End foreach

'

Gﬂter package weight and si%

Request shipping label /

Y

Print shipping label
Update all shipment &
cost info

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Flow of activities:

Actor

System

Shipping clerk

System

_6sp!ay Sale & Saleitems)

\ Customer info

Lookup Sale with
Saleltems

Assign shipper

Create shipment
- Link to Sale
K Link to Shipper
]

Fareach Saleitem

Update status

Mark as shipped

Mark as

backordered

Update status
Initiate backorder

Link to shipment

End foreach

!

Enter package weight and s'\zh
Request shipping label /

!

(

Print shipping label
Update all shipment &
cost info

1. Shipping requests sale and sale
item information.

2. Shipping assigns shipper.

3. For each available item, shipping
records item is shipped.

4. For each unavailable item,
shipping records back order.

5. Shipping requests shipping label
supplying package size and
weight.

1.1 System looks up sale and
returns customer, address, sale,
and sales item information.

2.1 System creates shipment and
associates it with the shipper.

3.1 System updates sale item as
shipped and associates it with
shipment.

4.1 System updates sale item as
on back order.

5.1 System produces shipping label
for shipment.
5.2 System records shipment cost.

2.1 Shipper is not available to that location, so select another.

3.1 If order item is damaged, get new item and updated item quantity.

3.1 If item bar code isn't scanning, shipping must enter bar code manually.
5.1 If printing label isn’t printing correctly, the label must be addressed

manually.

Ship items use

case

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

46

Summing up...

Activity diagrams are a diagrammatic method
for representing activities in a sequence and the
actor responsible for them

Multiple actors, sequence, decisions, looping and
parallel activities can all be represented

They are useful for documenting the steps in
complex use cases including the interaction
between actor and system

Note that activity diagrams are also useful in

requirements gathering for capturing business
workflow processes

1 Murdoch

W UNIVERSITY

ACt i V i ty Customer System

diagram for use
Ca Se Search for product

Fill shopping .
cart

Select options)

and quantity

.O~

i

This shows the

flow of activities Search and viw . -
for Fill Shopping
Cart use case, o ———
plus other use e
cases that are |
invoked (shown in (rasrocan
shaded ovals)

3

[

W)

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

System Sequence Diagram (SSD)

i

— —

System sequence diagram Miirdogh

UNIVERSITY

System sequence diagrams (55D) can
supplement use case descriptions and activity
diagrams

Whereas activity diagrams and descriptions help
the analyst understand the flow of activities,
the SSD describes the associated inputs and
outputs that are passed between the user and
the system

Shows sequence of interactions as messages
during flow of activities

System is shown as one object: a “black box”

SSD for Create customer !;1

account use case Murdoch

:System
Customer

. !
: createNewCustomer (name, phones, emails) :
i o
| |
| |
| cust ID, name, phones, emails |
e e e e e e e e e e e e e = —
| |
| |
: *address details := enterAddress (address) J
I 1
| |
I . . I
1 enterCreditCard (cc-info) 1
I =1
| |
| |
| f f - |
« _ _____ crdtcadinfodetails .

|

|

|

|

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

i

——

W

System sequence diagram Murdoch

UNIVERSITY

« Components: Actor, :System, object lifeline,
messages

 Shows actor and one object, which represents
the complete system

 Shows input and output messaging requirements
for a use case

« Can be used to help develop user interface

« Is a special case of a UML sequence diagram
(later topic) which also shows the internal
classes inside the system

System sequence diagram (SSD) <

notation Murdoch

The actor An object

interacting with (underlined)

the system representing the
automated system

:Systemn

An input message

Clerk

inquireOnltem (cataloglD, prodiD, size) The object lifeline; shows

/ the“sequence” of messages,
top to bottom

B Ao

R Bk et

1
i
____________ ==
item information I item information:
A : description, price, quantity
i
A returned value

Optional note to explain
something in a diagram

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

i

——

W

SSD message notation Murdoch

Input message:

« Solid line going from Actor to System

« Message name (verb-noun)

 Parameter list - input data (e.g. to identify
particular item needed)

Return:

« Dashed line going from System to Actor

« NoO message name

 Returned value(s)

SSD for Create customer
account use case

Customer

:System

createNewCustomer (name, phones, emails)

cust 1D, name, phones, emails

Return values

*address details := enterAddress (address)

r:: ____________________

enterCreditCard (cc-info)

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

R DR AR A R /A W

n

L i

b 4

Murdoch

UNIVERSITY

Input message

W
W

i

——

W

SSD message notation cont’d Murdoch

Loop frame:

« canh be used to indicate that a message is sent
repeatedly

Opt frame:

* indicates that a message is optional based on
some condition

Alt frame:
« enables if-then-else logic

SSD alternatives with looping <

NMiuirdnch
Y
Test condition for :System
repeatability
1
I
I

Notice that (a) /

I :
1[more items] Repeat hi
a n d (b) a re th e : addltem (itemlID, quantity) : inet‘l)'lee re?:‘;:rrtyg:leng

same logic. E Ny

The alternative :
notation in (b) (@ otae ntation
shows the i

looping, input and
ret u r n m e S S a g e S . [another item] description, price, extendedPrice '
i n a Si n g I e I I n e E := additem (itemID, quantity) ki

Clerk

n
(b) Alternate notation

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

SSD examples

« Opt Frame
(optional)

« Alt Frame
(if-else)

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016.

:System

Customer

' Opt |

: [accessory selected]

addAccessory (anAccessory)

|
I
I
I
: accessary details
|

e R A

<_ _________________
I
1
1
(a) Opt frame notation
:System
Sales clerk :
! 1
I 1
bAR | !
1
| [taxable item] !
: addSalesTax (locationCode) ,\:
i 1
] =
sales tax details !
_________________ —
< .
CELLECDLAE L ECL AR CRE LA R L TELAR L R CAR LR E LI ST L CEEE CLRETRETEL LS TRLLL
! [else] 1
1
| addTaxExemptionCode (eCode) :
f =i
: tax exemption details :
Ié __________________

(b) Alt frame notation

Cengage Learning

W

o0

w

Message notation - complete Murdoch

UNIVERSITY

[truelfalse condition] return-value := message-name (parameter-list)

An asterisk (*) indicates repeating or looping ot the message.

Brackets | | indicate a true/false condition. This 1s a test for that message

only. If it evaluates to true, the message 1s sent. If it evaluates to false, the

message 1sn’t sent.

B Message-name is the description of the requested service. It is omitted on
dashed-line return messages, which only show the return data paramerters.

B Parameter-list (with parentheses on mitiating messages and without

parentheses on return messages) shows the data that are passed with the

message.
B Return-value on the same line as the message (requires :=) 1s used to

describe data being returned from the destination object to the source object

in response to the message.

Text from p142 in Satzinger, J. Jackson, R. & Burd, S. (2016) Systems Analysis and Design in a
Changing World, 7t edition. Course Technology, Thomson Learning.

59

i

——

W

Steps for developing a SSD Murdoch

UNIVERSITY

1. Identify input messages:

« See use case flow of activities description or activity
diagram

« Wherever an arrow in the activity diagram crosses the
automation boundary there will be a message

2. Describe the message from the external actor to
the system using the message notation

« Name it verb-noun: what the system is asked to do
« Consider input parameters the system will need

« These will likely be attributes from the class diagram

i

——

W

Steps for developing a SSD Murdoch

UNIVERSITY

3. Identify any special conditions on input messages
Iteration/loop frame (or use * on the input message)

Opt or Alt frame

4. Identify and add output return values:
On message itself: aValue:= getValue(valuelD)

As explicit return on separate dashed line

5. Check sequence of messages and returns is
shown top-bottom and that nothing internal to the
system object is shown

Flow of activities:

Customer

System

Request account

Create customer

Enter addresses

Create addresses

Create account

Enter credit info

i
U

Verify credit info

Return account
details

fNA
Y

@

Actor

System

1. Customer indicates desire to
create customer account and

2. Customer enters one or more
addresses.

3. Customer enters credit/debit card
information,

enters basic customer information.

1.1 System creates a new customer,
1.2 System prompts for customer
addresses.

2.1 System creates addresses.
2.2 System prompts for credit/debit
card.

3.1 System creates account.

3.2 System verifies authorization
for credit/debit card.

3.3 System associates customer,
address, and account.

3.4 System returns valid customer
account details.

1.1 Basic customer data are incomplete.
2.1 The address isn't valid.
3.2 Credit/debit information isn't valid.

Activity diagram and

equivalent description for

Create Customer Account

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

SSD for Create customer !;1

account use case Murdoch

Customer System
l Request account } Create customer —Y—:S stem
Customer
1 T
l 1 1
1 : 1
(Enter addresses) raate ailirasses I createNewCustomer (name, phones, emails) |
o
| =1
1 1
1 1
| cust ID, name, phones, emails |
Enler Cf@dit imtO Create account r::_ - - - - —— —— — —— — — — — — — _I
\ > 1 1
1 1
: *address details := enterAddress (address) J
I “
Verify credit info | |
| . i |
1 enterCreditCard (cc-info) 1
I =
| |
Return account | |
details I I
credit card info details
e - - -~ --- 1
| |
| |
® ' '
1 1

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Flow of activities:

Actor

System

Shipping clerk

System

_6sp!ay Sale & Saleitems)

\ Customer info

Lookup Sale with
Saleltems

Assign shipper

Create shipment
- Link to Sale
K Link to Shipper
|

Fareach Saleitem

Update status

Mark as shipped

Mark as

backordered

Update status
Initiate backorder

Link to shipment

End foreach

!

Enter package weight and s'\zh
Request shipping label /

!

(

Print shipping label
Update all shipment &
cost info

1. Shipping requests sale and sale
item information.

2. Shipping assigns shipper.

3. For each available item, shipping
records item is shipped.

4. For each unavailable item,
shipping records back order.

5. Shipping requests shipping label
supplying package size and
weight.

1.1 System looks up sale and
returns customer, address, sale,
and sales item information.

2.1 System creates shipment and
associates it with the shipper.

3.1 System updates sale item as
shipped and associates it with
shipment.

4.1 System updates sale item as
on back order.

5.1 System produces shipping label
for shipment.
5.2 System records shipment cost.

2.1 Shipper is not available to that location, so select another.

3.1 If order item is damaged, get new item and updated item quantity.

3.1 If item bar code isn't scanning, shipping must enter bar code manually.
5.1 If printing label isn’t printing correctly, the label must be addressed

manually.

Ship items use case

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

64

SSD for
Ship items
Use Case

:System

Shipping clerk System
Lookup Sale with Display Sale & Saleltems +
Saleltems Customer info

Create shipment
Assign shipper Link to Sale
Link to Shipper

Foreach Saleitem

Available?

Mark as shipped

Update status

Mark as
backordered

Enter package weight and size
Request shipping label /

Update status
Initiate backorder

Print shipping label
Update all shipment &
cost info

Link to shipment

End foreach

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Céngage Learning

Rl |
Sh'pp'”.g clork getNextSale() I
| =
|
: customer, address, sale, and sale item info I
_________________ =

I
i setShipper(shipperlD) :
1 fl
|
l Loop J |
1 [more sale items] :
: .
1 1
I Alt J |
] 0 z |
, [shipped item] |
| recordShippeditem(saleltern) -
| I
_ _ _ _ _ _ Shippingconfimaton =
i |
I |

T Tl

1 [else] |
: initiateBackorder(saleltem) :
] |
' backorder confirmation :
P e e e —
I |
| |
! getShippingLabel{packageSize, weight) !
1 ~J
w _ _ _ _ _ shippinglabeldetals |

Activity diagram and SSD for Web Order

Customer Computer System

.—»@onnect to order pag9——>< Display order page

(Fnrst time customer’«‘mnk »(Display new customer

to new customer page : page/initiate Maintain

customer information
use case

[existing] |

:System

54

Customer

requestNewOrder()

orderPage

"
=
I

I

I

|

|

|

|

I

I

|

I

|

|

|
v |

: [new customerjnewCustomPage := requestNewCustomer() |

Go to Maintain customer
information use case

Y

C Log on/start order)—

Create order/display
catalog index
|

=V e

For each item v beginOrder (accountNo)
A
= logindex [
Gearch catalog/view |terD— Display catalog item RN IaRX i
T Lopp for all items | |
* productimage = viewProduct(prodID) |
/’l
(Adir?:;;:ig 2:,-“: = Add item to order |
addConfirmation := addltem (prodID, size, quantity)_
T

Y

Display summary
|

End for each
y___

(Indicate end of order

Update order

- NS _/

e, [Yes]
Make modifications

A AT TATA A

oL == = orderSummary :
vy l

| acceptOrder() |

isplay payment opllona | 2]

! = = = “paymenOptonsPage '

(Enter acceptance/ Einalizs Grdor) | it el |

payment information) I enterPayment (creditCardNo) I

| |
é _______________ |
= orderConfirmationPage |

Image from! Sy)tcnla Alla:yo;) arret DC);EII tra€t alls;lls Wort :b:, ZFthrEctition @i‘e—l-ﬁ.—eE'lgage Learning

Slide 66

Summing up...

System Sequence Diagrams (SSD) document the input and
output messaging requirements for a use case

A SSD can be developed readily from the flow of activities
section in the use case description

The messages from actor to system show any information
that is passed to the system, and return messages are
passed back from the system

The system itself is treated as a single object *black box’ and
no internal workings are shown

The SSD is expanded in the system design phase to a
Sequence Diagram that shows the interaction between
objects within the system

1 Murdoch

W UNIVERSITY

State Machine Diagrams -
modelling object behaviour

i

Object behaviour - states and ~
transitions Vardoch

Some objects (not all) have a life cycle with
state conditions that change and should be
tracked. For example -

A Student in a unit can be in any of several
possible states: Enrolled, Invalid, Discontinued,
Completed

The various use cases that involve a Student
object can move it from one state to another,
e.g. 'Withdraw from unit’ would transition it from
the Enrolled to the Discontinued state

Here, the particular state for the student is
recorded as a value in attribute ‘Status’

n

L2

Example: SMD for a ‘Saleltem’ Murdoch

UNIVERSITY

« A Saleltem can be in any of four states: open,
on back order, ready to ship, shipped

orderltem itemArrives
On back order

A4

addltem saleComplete shipltem archive

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

i

— —

State Machine Diagram (SMD) Mu:goch

UNIVERSITY

A State Machine Diagram (SMD) is a diagram
that shows the possible behaviour of an object
with states and transitions

« State - a condition during an object’s life when
it satisfies some criterion, performs an action, or
waits for an event

« Transition - the movement of an object from
one state to another

« (SMD is also called a State Transition Diagram)

i

——

State Machine Diagram components Mur‘goch

UNIVERSITY

« Origin state - the original state of an object
before it begins a transition)

 Destination state - the state to which an object
moves after completing a transition

« Transition - moves the object from the origin

state to the destination state —
 pseudostate - the starting point in a state
machine diagram ®
Y
e oy L

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

n
State Machine Diagram for a printer ~
Murdoch

UNIVERSITY

A State indicates a state of

being of the object. Name it
as a condition or a verb Transition-name can have a trigger,
phrase. a guard, and an action-expression.

/

onButtonPushed [safety cover closed] / run start-up 5
n

A

offButtonPushed \

The beginning pseudostate A Transition moves the object from the
denotes the start of the state origin state to the destination state.
machine behavior for this object.

Syntax of transition statement

transition-name (parameters, ...) [guard-condition] / action-expression 73

i

——

State Machine Diagram components Mur‘goch

UNIVERSITY

« Transition name - what causes the transition
to occur

OnButtonPushed

« guard-condition - a true/false test to see
whether a transition can fire

SafetyCoverClosed

« action-expression — some activity that must
be completed as part of a transition

RunSelfTest

Any of these may be empty, although there is
usually a transition name

i

L2

Example: SMD for a ‘Saleltem’ Murdoch

UNIVERSITY

« A Saleltem can be in any of four states: open,
on back order, ready to ship, shipped

orderltem itemArrives
On back order

\'d

addltem saleComplete shipltem archive

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Creating a State Machine Diagram - 5’—

steps Murdoch

UNIVERSITY

1. Review the class diagram and select classes that
might require state machine diagrams

2. For each class, make a list of status conditions
(states) you can identify

3. Begin building diagram fragments by identifying
transitions that cause an object to leave the
identified state

4. Sequence these states in the correct order and
aggregate combinations into larger fragments

5. Review paths and look for independent,
concurrent paths

1. Choose Saleltem.
need to be tracked: ready to ship, etc

2. List the states and exit transitions

1

Example: steps in creating a State ~
Machine Diagram for RMO ‘Saleltem’ Murdoch

UNIVERSITY

It has status conditions that

State

Transition causing exit

Open

saleComplete

Ready to Ship

shipltem

On back order

termnArrived

Shipped

Mo exit transition defined

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

77

Example: steps in creating a State —5!

Machine Diagram for RMO ‘Saleltem’ Murdoch

3. Build fragments — see figure below
4. Sequence in correct order - see figure below
5. Look for concurrent paths — none

Gn back ord Er\ itemArrived

V

(Open) saleComplete }Geadymshia shipltem }(Shipped)

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Creating a State Machine Diagram - —5!
steps cont’d Murdoch

6. Look for additional transitions and test both
directions

/. Expand each transition with appropriate
message event, guard condition, and action
expression

8. Review and test the state machine diagram for

the class
« Make sure state are really states for the object in the class

 Follow the life cycle of an object coming into existence and
being deleted

 Be sure the diagram covers all exception condition
 Look again for concurrent paths and composite states

i

Example: steps in creating a State ~
Machine Diagram for RMO ‘Saleltem’ Murdoch

6. Add other required transitions

UNIVERSITY

/. Expand with guard, action-expressions etc.

8. Review and test

Below is the final State Machine Diagram

addltem

Image from: Systems Analysis and De

—_—] saleComplete (\

orderltem itemArrives
On back order

v

> Ready to ship

sign in a Changing World, 7th Edition ©2016. Cengage Learning

shipltem archive
> Shipped

i

Concurrency in a State Machine -~
Dlagram MUI‘dOCh

Concurrent states - when an object is in one
or more states at the same time

e.g. a printer can be both On and Idle

Path - a sequential set of connected states and
transitions

Concurrent paths - when multiple paths are
being followed concurrently, i.e. when one or
more states in one path are parallel to states in
another path

Example: Printer with 3

——

W

concurrent paths Murdoch

UNIVERSITY

printcompleted

V—\ printRequest (doc) —
—>| Idle >| Printing }
onButtonPushed [safety

cover closed] / run startup
.e-{ off | >
___/ | > On }

I\

oftButtonPushed

« Concurrent paths often shown by synchronization bars (similar
to Activity Diagram)

- Multiple exits from a synchronization bar is an "AND"” condition
(printer is On and Idle)

« Multiple exits from a state is an "OR"” - the object follows only
one of the paths

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Summing up...

Some objects have a life cycle with status
conditions that change and should be tracked

These status conditions are part of the business
requirements of the system - e.g. an order can
be dispatched, on back order, etc

State Machine Diagrams (SMD) are used to
document the behaviour of these objects

SMDs show the states an object can be in, and
the transitions that cause it to move from one
state to another

SMD thus add further detail to the domain
modelling side of the analysis

Extending and integrating the
requirements models

Use case
diagrams

Use case
descriptions

{

bl

Activity
diagrams

-

System sequence
diagrams (SSDs])

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

n

—

w
Murdoch

UNIVERSITY

Domain model
class diagram

<
#"'
—

{

Ml

State machine
diagrams

84

Topic learning outcomes revisited

After completing this topic you should be able to:

« Explain how additional information about use cases can be
represented in detail

Create a CRUD table (CRUD matrix) to verify use cases against
the domain model

Interpret and write fully developed use case descriptions

Develop activity diagrams to document the flow of activities
within a use case

Develop system sequence diagrams to model the interaction
between actors and the system

Develop state machine diagrams to model object behavior

1 Murdoch

W UNIVERSITY

What's next?

In the next tutorial, we’ll continue applying various

techniques to extend the requirements models.

The models we’ve discussed in this topic will form a
basis for the design models that we will go on to
create. Before that, though, we’ll give a brief
overview of the systems design phase and the

activities in it.

